K-Means Clustering은 비지도 학습(Unsupervised Learning)의 대표적인 기법으로, 데이터를 군집화하여 비슷한 특성을 가진 데이터를 묶는 데 사용됩니다. 이 알고리즘은 특히 고객 데이터를 분석하거나 특정 패턴을 찾을 때 유용하며, 실습 과정을 통해 데이터 군집화를 직접 수행해볼 수 있습니다.K-Means Clustering의 원리초기 중심점 설정: K값(클러스터 개수)을 설정하고, 초기 중심점을 랜덤으로 선택합니다.클러스터 할당: 각 데이터 포인트에 대해 가장 가까운 중심점에 해당하는 클러스터로 할당합니다. 거리는 일반적으로 유클리드 거리(Euclidean Distance)로 계산됩니다.중심점 업데이트: 각 클러스터에 속한 데이터의 평균을 계산하여 새로운 중심점을 설정합니다.반..