1️⃣ 로지스틱 회귀란?로지스틱 회귀(Logistic Regression)는 머신러닝에서 이진 분류(Binary Classification) 문제를 해결하는 지도 학습(Supervised Learning) 알고리즘입니다.📌 로지스틱 회귀의 핵심 개념분류(Classification) 모델: 데이터를 두 개의 클래스로 나누는 모델.확률 예측: 특정 사건(예: 광고 클릭 여부)이 발생할 확률을 0과 1 사이의 값으로 예측.시그모이드 함수(Sigmoid Function) 사용: 로지스틱 회귀는 선형 회귀와 다르게 예측값을 0~1 사이의 확률값으로 변환.📌 로지스틱 회귀의 활용 사례이메일이 스팸인지 아닌지 분류암 진단(양성 또는 음성)은행 대출 승인 여부 예측광고 클릭 예측2️⃣ 로지스틱 회귀의 원리로지스틱 ..